François Chung, Ph.D.

Tag: 2012

Inspiralia 2012 - Technical report

Inspiralia 2012 – Technical report

Publication

François Chung, Tomás Rodríguez; Automatic pollen grain and exine segmentation from microscope images; Inspiralia, Madrid, 2012.

Abstract

In this article, we propose an automatic method for the segmentation of pollen grains from microscope images, followed by the automatic segmentation of their exine. The objective of exine segmentation is to separate the pollen grain in two regions of interest: exine and inner part. A coarse-to-fine approach ensures a smooth and accurate segmentation of both structures. As a rough stage, grain segmentation is performed by a procedure involving clustering and morphological operations, while the exine is approximated by an iterative procedure consisting in consecutive cropping steps of the pollen grain. A snake-based segmentation is performed to refine the segmentation of both structures. Results have shown that our segmentation method is able to deal with different pollen types, as well as with different types of exine and inner part appearance. The proposed segmentation method aims to be generic and has been designed as one of the core steps of an automatic pollen classification framework.

References

Publication

Related articles

APIFRESH (Inspiralia project)
EUE 2017 (book)
Inspiralia 2013 (technical report)

Learn more

VPH 2012 - Conference

VPH 2012 – Conference proceeding

Publication

Yves Martelli, Tristan Whitmarsh, Ludovic Humbert, François Chung, Luis M. del Río Barquero, Silvana Di Gregorio, Luigi Carotenuto, Alejandro F. Frangi; A software framework for 3D reconstruction and fracture risk assessment of the proximal femur from dual-energy x-ray absorptiometry; VPH 2012: Virtual Physiological Human - Integrative approaches to computational biomedicine, London, 2012.

Abstract

In clinical routine, osteoporosis diagnosis is performed using the areal Bone Mineral Density (aBMD) computed from two-dimensional Dual-energy X-ray Absorptiometry (DXA) images. This measurement of the "projected density" gives a global marker of osteoporosis but is insufficient for an accurate quantification of non-uniform mineral deficiencies. Quantitative Computed Tomography (QCT) is one possible modality for retrieving shape and bone mineral density measurements in 3D, leading to a better characterization of the local bone quality and the fracture risk. However, due to high financial costs and a high radiation dose for the patient, this modality is rarely used in clinical routine for the follow-up of osteoporosis. In this work, we show how state-of-the-art techniques and methods for fracture risk assessment of the proximal femur using 3D analysis from single-view DXA images were brought to the research and clinical end-user, through the use of an existing open source framework for fast prototyping of clinical applications.

References

Publication

Related article

GIMIAS framework (UPF project)

Learn more

VPH – Virtual Physiological Human

GIMIAS framework

GIMIAS framework

UPF project @Barcelona, Spain (2012). GIMIAS (Graphical Interface for Medical Image Analysis and Simulation) is a workflow-oriented environment for solving biomedical image computing and simulation problems, which is extensible through the development of problem-specific plugins. In addition, GIMIAS provides an open source framework for the development of research and clinical software prototypes while allowing business-friendly technology transfer.

GIMIAS is particularly tailored to integrate tools from medical imaging, computational modeling, numerical methods and computer graphics to provide scientific developers and researchers with a software framework allowing them to build a wide variety of tools. The aim of GIMIAS is to combine tools from different areas of knowledge, thus providing a framework for multi-disciplinary research, clinical study and commercial product development.

Some of the main features of GIMIAS include:

  • multi-modal image processing;
  • personalized model creation;
  • numerical simulation;
  • visualization of simulation results.

As a Scientific Software Engineer within the GIMIAS team, my work consists in developing, optimizing, testing and installing software solutions for orthopedic applications. More precisely, I am in charge of the software development for the EU FP7-funded MySpine project and for both Catalonia ACC1Ó-funded 3D-FemOs and VERTEX projects. MySpine aims to create a clinical predictive tool to provide the clinicians with patient-specific biomechanical analysis. 3D-FemOs and VERTEX aim to improve both the diagnosis of osteoporosis and the prevention of hip (3D-FemOs) and vertebral (VERTEX) fractures.

References

Related article

VPH 2012 (conference proceeding)

Learn more

GIMIAS – Graphical Interface for Medical Image Analysis and Simulation
MySpine

Mines 2018 – Magazine

Mines 2012 – Magazine article

Publication

François Chung; De l'imagerie médicale à la médecine du futur; Mines Revue des Ingénieurs, 458, pp. 53-56, 2012.

Abstract

Depuis ses débuts, l'imagerie médicale a pour objectif de fournir aux radiologues des images médicales afin de les aider dans leur diagnostic. Avec l'avancée des techniques d'acquisition, les radiologues se retrouvent à analyser des images de plus en plus complexes et dans des quantités de plus en plus importantes. Du côté de la recherche, cela se traduit par une collaboration entre physique médicale, radiologie et imagerie médicale. Les physiciens ont pour objectif d'améliorer la qualité et la résolution des images médicales. Ces améliorations permettent d'aider les radiologues dans leur diagnostic et à la communauté de l'imagerie médicale de pouvoir extraire des informations plus précises. Cette collaboration permet non seulement d'avancer dans les sciences médicales (ex. étude de l'anatomie et physiologie), mais également dans les applications cliniques (ex. détection de maladies et planification de thérapie).

References

Publication

Published version (PDF)
Bibliographic reference (BibTeX)
Online version (Ingénieurs Belges)

L'Ing. 2012 - Magazine

L’Ing. 2012 – Magazine article

Publication

François Chung; L'imagerie médicale: Un domaine d'ingénieurie et de recherche au service de la société; L'Ing., 17, pp. 10-12, 2012.

Abstract

Depuis ses débuts, l'imagerie médicale a pour objectif de fournir aux radiologues des images médicales afin de les aider dans leur diagnostic. Avec l'avancée des techniques d'acquisition, les radiologues se retrouvent à analyser des images de plus en plus complexes et dans des quantités de plus en plus importantes. Du côté de la recherche, cela se traduit par une collaboration entre physique médicale, radiologie et imagerie médicale. Les physiciens ont pour objectif d'améliorer la qualité et la résolution des images médicales. Ces améliorations permettent d'aider les radiologues dans leur diagnostic et à la communauté de l'imagerie médicale de pouvoir extraire des informations plus précises. Cette collaboration permet non seulement d'avancer dans les sciences médicales (ex. étude de l'anatomie et physiologie), mais également dans les applications cliniques (ex. détection de maladies et planification de thérapie).

References

Publication