François Chung, Ph.D.

Tag: feature extraction

EUE 2017 - Book

EUE 2017 – Book

Publication

François Chung, Tomás Rodríguez; Multi-focal Image Segmentation, Classification and Authentication: A General Framework applied on Microscope Pollen Images; Éditions universitaires européennes (EUE), Saarbrücken, 2017; ISBN: 978-3841677907.

Abstract

In this book, we propose a general framework for multi-focal image segmentation, classification and authentication, the methodology being demonstrated on microscope pollen images. The framework is meant to be generic and based on a brute force-like approach aimed to be efficient not only on any kind, and any number, of pollen images (regardless of the pollen type), but also on any kind of multi-focal images. All stages of the framework are designed to be used in an automatic fashion. First, the optimal focus is selected using the absolute gradient method. Then, pollen grains are extracted from microscope images, followed by the automatic segmentation of their exine. A coarse-to-fine approach ensures a smooth and accurate segmentation of both structures. Finally, feature extraction and selection are performed on pollen grains using a generalized approach and the pollen classification is tested with four classifiers: Weighted Neighbor Distance, Neural Network, Decision Tree and Random Forest. The latter method, which has shown the best and more robust classification accuracy results (above 97% for any number of pollen types), is finally used for a final authentication stage.

References

Publication

Related article

APIFRESH (Inspiralia project)

Learn more

EUE – Éditions universitaires européennes

Inspiralia 2013 - Technical report

Inspiralia 2013 – Technical report

Publication

François Chung, Tomás Rodríguez; A general framework for multi-focal image classification and authentication: Application to microscope pollen images; Inspiralia, Madrid, 2013.

Abstract

In this article, we propose a general framework for multi-focal image classification and authentication, the methodology being demonstrated on microscope pollen images. The framework is meant to be generic and based on a brute force-like approach aimed to be efficient not only on any kind, and any number, of pollen images (regardless of the pollen type), but also on any kind of multi-focal images. All stages of the framework's pipeline are designed to be used in an automatic fashion. First, the optimal focus is selected using the absolute gradient method. Then, pollen grains are extracted using a coarse-to-fine approach involving both clustering and morphological techniques (coarse stage), and a snake-based segmentation (fine stage). Finally, features are extracted and selected using a generalized approach, and their classification is tested with four classifiers: Weighted Neighbor Distance, Neural Network, Decision Tree and Random Forest. The latter method, which has shown the best and more robust classification accuracy results (above 97% for any number of pollen types), is finally used for the authentication stage.

Keywords

  • generalized feature extraction
  • image classification
  • microscope images
  • optimal focus selection
  • pollen authentication
  • Random Forest
  • snake-based segmentation
  • supervised clustering

References

Publication

Related articles

APIFRESH (Inspiralia project)
EUE 2017 (book)
Inspiralia 2012 (technical report)

Learn more