François Chung, Ph.D.

Tag: aprendizaje no supervisado

Aprendizaje profundo y TensorFlow

Aprendizaje profundo y TensorFlow

Formación Cognitive Class, MOOC (2020). Esta ruta de aprendizaje presenta los conceptos básicos de aprendizaje profundo y TensorFlow con experiencia práctica en la resolución de problemas. Durante toda la formación, TensorFlow se utiliza en el ajuste de curvas, la regresión, la clasificación y la minimización de funciones de error. Luego, este concepto se explora en el mundo del aprendizaje profundo, donde TensorFlow se aplica para la propagación hacia atrás para ajustar los pesos y los sesgos.

Curso 1: Fundamentos del aprendizaje profundo

Temas principales:

  • Introducción al aprendizaje profundo;
  • Modelos de aprendizaje profundo;
  • Modelos adicionales de aprendizaje profundo;
  • Bibliotecas y plataformas de aprendizaje profundo.

Curso 2: Aprendizaje profundo con TensorFlow

Temas principales:

  • Introducción a TensorFlow;
  • CNN - Red neuronal convolucional;
  • RNN - Red neuronal recurrente;
  • Aprendizaje sin supervisión.

Referencias

Formación

Deep learning fundamentals (Fundamentos del aprendizaje profundo, certificado del curso)
Deep Learning Essentials (insignia de certificación)
Deep learning with TensorFlow (Aprendizaje profundo con TensorFlow, certificado del curso)
Deep Learning using TensorFlow (insignia de certificación)

Artículos relacionados

Más información

Fundamentos de Spark

Fundamentos de Spark

Formación Cognitive Class, MOOC (2020). Esta ruta de aprendizaje aborda los fundamentos de Apache Spark, un motor de código abierto para el procesamiento de datos a gran escala que está revolucionando el mundo de la analítica y del big data. Esta formación es una oportunidad para aprender de los líderes de la industria sobre Spark, que se basa en la velocidad, la facilidad de uso y el análisis, y brinda oportunidades y proyectos prácticos para generar confianza con el conjunto de herramientas de Spark.

Curso 1: Fundamentos de Spark I

Temas principales:

  • Introducción a Spark;
  • Resilient Distributed Dataset (RDD) y DataFrames;
  • Programación de aplicaciones Spark;
  • Introducción a las bibliotecas de Spark;
  • Configuración, seguimiento y puesta a punto de Spark.

Curso 2: Fundamentos de Spark II

Temas principales:

  • Introducción a los notebooks;
  • Arquitectura RDD;
  • Optimización de transformaciones y acciones;
  • Caché y serialización;
  • Desarrollo y pruebas.

Curso 3: Spark MLlib

Temas principales:

  • Tipos de datos Spark MLlib;
  • Revisión de algoritmos;
  • Árboles de decisión y bosques aleatorios;
  • Agrupamiento Spark MLlib.

Curso 4: Exploración de GraphX

Temas principales:

  • Introducción a Graph-Parallel;
  • Exploración de los operadores de gráficos;
  • Visualización y modificación de GraphX;
  • Agregación y almacenamiento en caché.

Curso 5: Big data en R con Spark

Temas principales:

  • Introducción a SparkR;
  • Manipulación de datos con SparkR;
  • Aprendizaje automático con SparkR.

Referencias

Formación

Spark fundamentals I (Fundamentos de Spark I, certificado del curso)
Spark – Level 1 (insignia de certificación)
Spark fundamentals II (Fundamentos de Spark II, certificado del curso)
Spark MLlib (certificado del curso)
Exploring GraphX (Exploración de GraphX, certificado del curso)
Big data in R using Spark (Big data en R con Spark, certificado del curso)
Spark - Level 2 (insignia de certificación)

Artículos relacionados

Fundamentos de Hadoop (formación Cognitive Class)
Especialización en ciencia de datos (formación Coursera)

Más información

Especialización en ciencia de datos

Especialización en ciencia de datos

Formación Coursera, MOOC (2020). Esta especialización cubre los conceptos y herramientas necesarios para la ciencia de datos, desde formular las preguntas correctas hasta hacer inferencias y publicar resultados. Los temas cubiertos incluyen el uso de R para limpiar, analizar y visualizar datos, usar GitHub para administrar proyectos de ciencia de datos y realizar análisis de regresión, mínimos cuadrados e inferencia usando modelos de regresión.

Curso 1: Caja de herramientas del científico de datos

Temas principales:

  • Fundamentos de la ciencia de datos;
  • R y Rstudio;
  • Control de versiones y GitHub;
  • R Markdown, pensamiento científico y big data.

Curso 2: Programación R

Temas principales:

  • Antecedentes y puesta en marcha;
  • Programación con R;
  • Funciones de bucle y depuración;
  • Simulación y análisis de rendimiento de software.

Curso 3: Obtención y limpieza de datos

Temas principales:

  • Encontrar datos y leer diferentes tipos de archivos;
  • Sistemas de almacenamiento de datos;
  • Organizar, fusionar y gestionar datos;
  • Manipulación de texto y datos en R.

Curso 4: Análisis exploratorio de datos

Temas principales:

  • Gráficos analíticos y representación gráfica en R;
  • Lattice y ggplot2;
  • Reducción de dimensionalidad de datos;
  • Técnicas de análisis de conglomerados.

Curso 5: Investigación reproducible

Temas principales:

  • Conceptos, ideas y estructura;
  • Markdown y knitr;
  • Lista de comprobación de la investigación reproducible;
  • Análisis de datos basados en evidencias.

Curso 6: Inferencia estadística

Temas principales:

  • Probabilidad y valores esperados;
  • Variabilidad, distribución y asíntota;
  • Intervalos, pruebas y valor p;
  • Pruebas de potencia, bootstrapping y permutación.

Curso 7: Modelos de regresión

Temas principales:

  • Mínimos cuadrados y regresión lineal;
  • Regresión lineal y multivariante;
  • Residuos y diagnósticos;
  • Regresión logística y de Poisson.

Curso 8: Aprendizaje automático

Temas principales:

  • Predicción, errores y validación cruzada;
  • Paquete caret;
  • Árboles de decisión y bosques aleatorios;
  • Regresión regularizada y predictores combinados.

Curso 9: Desarrollo de productos de datos

Temas principales:

  • Shiny, GoogleVis y Plotly;
  • R Markdown y Leaflet;
  • Paquetes R y Swirl.

Referencias

Artículos relacionados

Fundamentos de Spark (formación Cognitive Class)
Fundamentos de Hadoop (formación Cognitive Class)
AWS: fundamentos y aprendizaje automático (formación AWS)

Más información

CVIU 2013 - Artículo de revista científica

CVIU 2013 – Artículo de revista científica

Publicación

François Chung, Hervé Delingette; Regional appearance modeling based on the clustering of intensity profiles; In: Computer Vision and Image Understanding (CVIU), 117 (6), pp. 705-717, 2013.

Abstract

Model-based image segmentation is a popular approach for the segmentation of anatomical structures from medical images because it includes prior knowledge about the shape and appearance of structures of interest. This paper focuses on the formulation of a novel appearance prior that can cope with large variability between subjects, for instance due to the presence of pathologies. Instead of relying on Principal Component Analysis (PCA) such as in Statistical Appearance Models (SAMs), our approach relies on a multimodal intensity profile atlas from which a point may be assigned to several profile modes consisting of a mean profile and its covariance matrix. These profile modes are first estimated without any intra-subject registration through a boosted Expectation-Maximization (EM) classification based on spectral clustering. Then, they are projected on a reference mesh whose role is to store the appearance information in a common geometric representation. We show that this prior leads to better performance than the classical monomodal PCA approach while relying on fewer profile modes.

Palabras clave

  • appearance modeling
  • medical imaging
  • model-based image segmentation
  • unsupervised clustering

Referencias

Publicación

Artículos relacionados

3D Anatomical Human (proyecto INRIA)
Ph.D. Thesis 2011 (tesis doctoral)

LAP 2011 - Libro

LAP 2011 – Libro

Publicación

François Chung; Regional appearance modeling for model-based image segmentation: Methodological approaches to improve the accuracy of model-based image segmentation; Lambert Academic Publishing (LAP), Saarbrücken, 2011; ISBN: 978-3844322095.

Abstract

This thesis presents a novel appearance prior for model-based image segmentation. This appearance prior, denoted as Multimodal Prior Appearance Model (MPAM), is built upon an Expectation–Maximization (EM) clustering of intensity profiles with model order selection to automatically select the number of profile classes. Unlike classical approaches based on Principal Component Analysis (PCA), the clustering is considered as regional because intensity profiles are classified for each mesh and not for each vertex. Comparative results on liver profiles from Computed Tomography (CT) images show that MPAM outperforms PCA-based appearance models. Finally, methods for the analysis of lower limb structures from Magnetic Resonance (MR) images are presented. A first part deals with the creation of subject-specific models for kinematic simulations of the lower limbs. In a second part, the performance of statistical models is compared in the context of lower limb bone segmentation when only a small number of datasets is available for training.

Referencias

Publicación

Libro (Amazon)
Libro (MoreBooks)
Referencia bibliográfica (BibTeX)

Artículos relacionados

3D Anatomical Human (proyecto INRIA)
Ph.D. Thesis 2011 (tesis doctoral)

Más información

LAP – Lambert Academic Publishing